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INTRODUCTION 
 Cancer is a highly heterogeneous disease, both morphologically and genetically (1). A current 
shortcoming in cancer prognostication and treatment is a lack of methods that adequately address the complexity 
and diversity of the disease. A detailed molecular characterization or fingerprint of cancer is an objective 
recently made possible by the development of several new high throughput analytical methods. These include 

techniques for the analysis of DNA, mRNA, and proteins within a cell (2-4). Building databases of detailed 
molecular information and linking them to clinical information are very attainable goals (5). This approach has 
the potential to help patients by improving grouping of tumor subtypes, which may enable clinicians to more 
accurately distinguish prognostic groups, and predict the most effective therapies. Prognostic marker systems 
based on single parameters have generally proven inadequate. Thus, multiparametric methods, which rely on 
many pieces of information, are ideally suited to the grouping of tumor subtypes and the identification of 
specific patterns of disease progression.  
 A major objective of current cancer research is to develop a detailed molecular fingerprint of tumor cells 
and tissues that is linked to clinical information. Toward this end, using the Multiplex Ligatable Probe 
Amplification technique (MLPA, 6), a novel assay recently developed at MRC Holland (Amsterdam)  we will 
interrogate 120 gene loci (Table 1, Study Instruments) altered in breast cancer using a nested case cohort of 600 
stage-specific breast cancers drawn from a retrospective cohort of 6000 primary breast cancers.  
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BODY 
 
Statement of Work 
 
Task 1. Cohort construction, Months 1-24  
 
a: Begin construction of the breast cancer study cohort.  We have identified 6000 breast cancer 

cases in the HFHS system from 1981 through 2000. Drs. Worsham and Chase will select 100 
stage-specific breast cancers corresponding to stage 0 (in situ), stage 1, 2, 3, 4 and unknown stage 

b: Set up database of study cohort 
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c: Retrieval of H & E slides for cancer cohort 
d: The Pathologist Dr.Raju and the P.I will begin pathology review of the cancer cohort recording 

histopathological characteristics on the Pathology Cancer Review Form (see study instruments). 
e: Data entry of histopathology indicators  
f: selection of tumor blocks and sectioning of tissue for microdissection and DNA extraction 
 
Task 2. Molecular Assays Months 3-34 
 
a: Begin the novel Multiplex Ligatable Probe Amplification(MLPA) assays  
b: As DNA becomes available set up molecular worksheets and forms for electronic data entry of 

molecular data (Teleform) 
 
Task 3. Medical chart abstraction    Months 3-32 
a:  Begin medical chart abstraction using the Medical record Abstraction Form 
b:  Data entry of forms into the study database 
 
Task 4. Interim Analyses, Months 18-24 
 
a: Interim statistical analysis of data obtained from molecular, pathology,  and medical record 

abstractions will be performed periodically 
b: Annual reports will be written 
 
Task 5. Final Analyses and Report Writing, Months 32-36  
a: Final analyses of data form molecular, pathology and medical abstractions will be performed 
b: A final report and initial manuscripts will be prepared  
 
PROGRESS (July 1, 2003- June 30, 2004: 

 
KEY RESEARCH ACCOMPLISHMENTS 
Task 1 accomplishments: 
• July 1, 2002-June 30th 2006: 
 We have so far acquired a total breast cancer patient database of 5008 validated and verified 

breast cancer cases.  The study cohort of 600 stage-specific breast cancer subjects was derived 
from this comprehensive patient database.  Selection of breast cancer subjects in each of the 6 
stages, stage 0, stage 1, stage 2, stage 3, stage 4, and stage unknown was performed by the 
biostatistician Dr. Mei Lu (Dr. Lu replaced Dr. Chase). Criteria for selection were as follows: 1) 
age <50 years, Caucasian Americas (CA); age <50 years, African American (AA); 2) age >50 
years, CA; age >50 years, AA.  A total of 1,244 subjects were obtained as a result of this 
selection; stage 0=215; stage 1= 225; stage 2= 228; stage 3= 188; stage 4= 179; stage unknown= 
209. Further selection of 100 stage-specific cases for equal representation of CA and AA in each 
of the two age categories, <50 years and > 50 years was achieved in a random fashion by Dr.  
Gary Chase.  Thus, the study cohort of 600 breast cancer subjects, 100 in each of the 6 stages has 
been completed. Status:  Completed 
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July 1, 2002-June 30th 2006 
• Data bases of the study cohort have been completed and linked with the Henry Ford Health 

System Tumor Registry for demographics, histopathology, and clinical information.  The latter 
has been obtained for the entire cohort of 1,244 subjects. Status: Completed 

July 1, 2002-June 30th 2006: 
• The study Pathologist Dr. Raju has completed review of 560 breast cancer subjects (missing 

slides for review from the Pathology archives accounted for 40 cases) 
  Status: Completed 
 July 1, 2002-June 30th 2006 
• Pathology Review Form data via electronic Teleform data entry.   
 Status: Completed  
July 1, 2002-June 30th 2006 
• Tissue block retrieval, sectioning, H & E staining, microdissection, and DNA extraction has been 

accomplished for 465 (missing or unavailable tissue blocks account for approximately135 cases) 
Status: Completed  

   
Task 2 
July 1, 2002-June 30th 2006 
 Multiplex Ligatable Probe Amplification (MLPA) assays have been performed for a total of 425  
 Cases (insufficient DNA, missing or unavailable blocks accounted for 135 cases).    
 145 patients. Status:  Completed  
 
Task 3 
July 1, 2002-June 30th 2006 
• Medical record abstraction has been completed for 390 subjects and entered into the database 
Status: Completed 
 
Task 4: Interim Analyses 

  Status: Interim statistical analysis of 263 breast cancer patients for a total of 595 records was  
  performed and present at the June 2005 Era of Hope meeting (Appendix item 1 & 2) 
 
 Task 5. Final Analyses and Report Writing, Months 32-36  
  Final analyses of data for molecular, pathology and medical abstractions: Status: Completed 
  Manuscripts:   
  1: “Molecular classification of breast carcinoma in situ” (Appendix item 3) 
  2: “Molecular modeling tumor versus non-tumor, in preparation 
  3: Stage specific genetic algorithms in breast cancer, in preparation 
 
CONCLUSION/REPORTABLE OUTCOMES 
1: Worsham MJ, Yang J,  Tiwari N, Chen KM, Cheng J, Shah V, Raju U. Delineating a molecular continuum 
for breast cancer progression: molecular modeling individual gene loci alterations in breast cancer”. DOD Era of 
Hope,  Philadelphia, PA, June 8th, 2005   
2:  Raju U, Sethi S, Lu M,  Qureshi H, Cheng J, Yang J,  Tiwari N, Chen KM, Worsham MJ. Molecular  
differentiation of breast carcinoma in situ.  Symposium presnetationm, DOD Era of Hope,  Philadelphia, PA, 
June 8th, 2005   
3. Raju U, Lu M, Sethi S, Qureshi H, Wolman SR, Worsham MJ. “Molecular classification of breast carcinoma 
in situ”   In press, November 2006, Current Genomics 
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Appendices  
 
1: Delineating a molecular continuum for breast cancer progression: molecular modeling individual gene 
loci alterations in breast cancer. Poster presentation, DOD Era of Hope,  Philadelphia, PA, June 8th, 2005   
Abstract: 
 
 A current shortcoming in cancer prognostication and treatment is a lack of methods that adequately 
address the complexity and diversity of the disease. Prognostic marker systems based on single parameters have 
generally proven inadequate. Thus, multiparametric methods, which rely on many pieces of information, are 
ideally suited to the grouping of tumor subtypes and the identification of specific patterns of disease 
progression.  
       To test the hypothesis that the extent of genomic imbalance at gene loci known to be involved in breast 
cancer is progressive, and is evidence for a molecular continuum for breast cancer progression, genetic 
alterations of loss and gain of individual gene loci were identified using a novel assay that interrogated an 
evidence-based panel of 122 gene loci implicated in breast cancer, many of which are distributed along critical 
pathways utilized by breast cancer cells. The study cohort comprised 263 breast cancer patients for a total of 595 
records, inclusive of 191 normal breast epithelium records, 93 benign breast lesions, 117 carcinoma in situ 
lesions, and 193 tumor lesions. Tumor (T) areas concurrent with benign proliferative lesions (BPL), normal 
breast epithelium (N), and in situ lesions (CIS) of DCIS and LCIS within a 5 micron section were marked by the 
study pathologist as part of the pathology review process and individually microdissected for DNA extraction. 
Statistical analysis was carried out using log-linear models, specifically the uniform association (UA) model in 
which scores of 1 to 4 were assigned for variables of lesion type (N, BPL, CIS, T).  Scores for gene copy 
number ranged from 0 to 5, where 0 was homozygous loss, 1 was loss of 1 copy, 2 normal gene copy number, 
and 3, 4, and 5 gene copy number gain.  
      There was excellent goodness-of-fit for the UA model and further comparison of the UA model with 
independent models indicated a significant association between lesion type and gene copy number alterations. 
Twenty four candidate genes emerged based on their ability to discriminate among the four lesions types of N, 
BPL, CIS and T. A subset analysis, performed to test the ability the 24 candidate genes to distinguish between 
specific categories of N and BPL, BPL and CIS, and CIS and T identified statistically significant unique and 
overlapping targets. Three genes, BCL2, MYC, and PTEN appear to initiate the normal to benign 
transformation process. Progression from benign to carcinoma in situ was attributed to 4 additional genes, BAX, 
FGF3, MSH2, and SLA, while maintaining the base line acquisition of BCL2, MYC, and PTEN (from N to 
BPL). In the CIS to T, CCND1 and RB1 were identified in addition to previously acquired BCL2 and SLA. Our 
results indicate that discrete gene loci form a key repertoire of molecules along a molecular continuum in the 
evolution of disease progression. 
 



  

2: Molecular  differentiation of breast carcinoma in situ. Symposium presentation and poster session, 
DOD Era of Hope,  Philadelphia, PA, June 8th, 2005   
 
Abstract 
 Most breast carcinomas in situ (CIS) are easily categorized as ductal (DCIS) or lobular (LCIS). A 
pleiomorphic variant of invasive lobular carcinoma (PILC) is known to be an aggressive variant of invasive 
lobular carcinoma (ILC). Because of its histological similarity and associated necrosis, most PLCIS lesions have 
been diagnosed as DCIS. Additional methods to adequately aid in the accurate differential diagnosis of in situ 
breast carcinomas has clinical implications, as current management of classic LCIS versus PLCIS and DCIS is 
not identical.  
 The overall aim of our research is to produce a multiparametric, comprehensive genome-wide molecular 
blueprint of CIS integrated with clinical risk factors in order to refine patient diagnosis and prognosis to aid in 
the clinical management of patients at the earliest disease stage.  

To assess the ability to molecularly differentiate among carcinoma in situ lesions of PLCIS, LCIS, and 
DCIS using our genome wide strategy (DAMD17-02-1-0406), DNA from in situ breast carcinoma patients 
classified into the three categories of PLCIS, LCIS and DCIS were interrogated for gene loss and gain at 122 
gene loci. There were 57 patients, 23 (40%) PLCIS, 13(23%) LCIS and 21(37%) DCIS. An interpretation of 
gene loci loss or gain was measured as the number of copies in a range of 0, 1 as loss, copy number 2 as normal, 
3 or more as gain, To explore the predictive ability of  gene loci to differentiate among in situ tissue categories, 
we compared gene loci copy number differences between two tissue categories using the two-sample t-test on a 
log transformation because the data lacked a normal distribution, and chi-square tests on  three-category (loss, 
normal and gain) and two-category (normal, loss/gain) data, respectively.  Thirteen gene probes with p-values 
<0.05 in any one of the three pair wise in situ group comparisons were noted. Among those13 gene loci, seven 
gene probes were significant in proportions in at least two of  the three pair wise in situ group comparisons 
based on the log transformation data, namely PTEN, CASP1, ING1, TINF2, NFKB1A, B2M, and CDH1, where 
CASP1 differed significantly in means among  all of the three  pair wise in situ categories. Gene locus 
TNFRSF1B at 1p36.3 had a higher copy number for PLCIS compared DCIS with a mean (STD) of 2.32 and 
1.76 respectively, and a p-value =0.010.  The absolute correlation coefficient was in a range of 0 to 1. Gene 
probes were highly correlated if the absolute correlation coefficient is over 0.70. The correlations among those 
13 genes ranged from high for RENT2 and LMO2 or CDH1 (r=0.68, o.64), to low between TNFRSF1B and 
ING1 (r=0.01). Independent validation of these molecular fingerprints will permit a more robust differential 
diagnosis of PLCIS aiding in the refinement of this disease phenotype as distinct from other in situ lesions. 

 
3: “Molecular classification of breast carcinoma in situ” in press, November 2006 issue of Current Genomics.  
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ABSTRACT 

 Pleomorphic variant of invasive lobular carcinoma (PILC) is an aggressive variant of invasive lobular 

carcinoma (ILC). Its in situ counterpart, pleomorphic lobular carcinoma in situ (PLCIS) is a recently described 

entity. Morphologically it has the typical architectural pattern of LCIS, but the neoplastic cells resemble 

intermediate grade DCIS. Molecular signatures that distinguish PLCIS from DCIS and LCIS would provide 

additional tools to aid in the histopathologic classification of PLCIS as a lesion distinct from LCIS and DCIS. 

CIS lesions, obtained from a study cohort of 38 breast cancer patients, were divided into 18 DCIS, 14 PLCIS 

and 6 LCIS. DNA from microdissected archival tissue was interrogated for loss or gain of 112 breast-cancer-

specific genes using the Multiplex Ligation-dependent Probe Amplification Assay (MLPA). Classification 



  

Regression Tree (CART) analysis was employed to develop a gene-based molecular classification to distinguish 

or separate out PLCIS from DCIS and LCIS.  Molecular classification via CART, based on gene copy number, 

agreed with histopathology in 34/38 CIS cases.  Loss of CASP1 was predictive of LCIS (n=4) with one 

misclassified PLCIS. Gain of RELA predicted only the LCIS classification (n=2 cases).  STK15 and TNFRSF1B 

 were predictive only for DCIS with no misclassifications.  Gain of EHF and TNFRSF1B and loss of NCOA3 

were predictive of PLCIS, but not without misclassification.  Molecular reclassification by CART was 

accomplished in 4 CIS cases: 1 PLCIS was reclassified as LCIS, 1 LCIS reclassified as PLCIS, and 2 DCIS 

cases as PLCIS. This study provides additional rationale for molecular modeling strategies in the evaluation of 

CIS lesions.  This diagnostic aid may serve to minimize misclassification between PLCIS and DCIS, and PLCIS 

and LCIS, aiding to increase accuracy in the differential diagnosis of CIS lesions.  

INTRODUCTION 

 Most breast carcinomas in situ are easily categorized as ductal (DCIS) or lobular (LCIS) (Figure 1). 

However, some CIS lesions have indeterminate histological features (Figure 2)[1, 2]. A pleomorphic variant of 

invasive lobular carcinoma (PILC) is known to be an aggressive variant of invasive lobular carcinoma (ILC)[3]. 

Its in situ counterpart, (PLCIS), defined by Frost et al.[4] in 1996, has not been fully defined histologically and 

biologically (Figure 3).   PLCIS, like PILC, is expected to be more aggressive than LCIS (Figure 4)[5].  

Moreover, although classic LCIS is considered a risk marker for cancer when compared to DCIS, the clinical 

and biological significance of PLCIS is currently unknown[4]. 

 The cellular morphology in PLCIS is similar to that of intermediate grade DCIS (Figure 4). In the past, 

because of the histological similarity and associated necrosis, most PLCIS lesions have been diagnosed as 

DCIS. Treatment strategies are different for different types of CIS. If a diagnosis of LCIS is made, the patient is 

followed by observation[2], whereas a diagnosis of DCIS usually leads to definitive treatment, depending on the 



  

extent and grade of DCIS (mastectomy, lumpectomy and radiation therapy, or observation alone). Because of 

the expected aggressive behavior of PLCIS, it is believed that treatment similar to DCIS may be warranted.     

 Current management of classic LCIS versus PLCIS and DCIS is not uniform, and additional methods to 

aid in the differential diagnosis are likely to have clinical consequences. Gene expression of E-cadherin (EC) 

provides some degree of lesion sub-typing (Figure 5)[6-8]. Although a negative EC stain can confirm a 

diagnosis of classic ILC or PLCIS it cannot distinguish LCIS and ILC from PLCIS. Furthermore, positive EC 

staining of DCIS-ID [ID not defined or indeterminate] lesions with reduced EC staining (EC-1+) (Figure 6) can 

increase the propensity for misdiagnosis.  Thus, a negative EC stain cannot unequivocally distinguish DCIS-ID 

from PLCIS.   

 Molecular fingerprinting of CIS, by integrating lesion-specific genetic targets into the differential 

diagnosis, has the potential to provide more accurate distinction of prognostic groups and improved therapeutic 

strategies. The goal of this study was to test whether a molecular classification approach using gene copy 

number and Classification Regression Tree (CART) models can differentiate among three types of CIS: PLCIS, 

DCIS and LCIS.  

MATERIALS AND METHODS 
Subjects 

 The patient cohort comprised 38 breast cancer cases with CIS lesions, either concurrent with tumor (17 

cases), as single CIS lesions of DCIS (9 cases), PLCIS (9 cases), and LCIS (2 cases), or in one case as 

concurrent CIS lesions of LCIS and PLICS, with LCIS as the lesion of inclusion (Table 1).  All the DCIS 

lesions were of intermediate grade.  The final CIS designation of the 38 patient cohort was as follows: 18 DCIS, 

14 PLCIS, and 6 LCIS (Table 1).  

DNA Extraction 

 CIS tissue and normal breast epithelium when available from each case were microdissected for DNA 

extraction.  As a first step, 300ul of P-buffer (50mM tris-HCL, pH 8.5; 100mM NaCl, 1mM EDTA, 0.5% Triton 



  

X100; 20mM DTT) was added to tubes containing whole 5 micron tissue sections or microdissected tissue. The 

tubes were heated for 15-20 min, at 90oC in a water bath and allowed to cool down to 60oC followed by the 

addition and mixing of  6ul of 20mg/ml Proteinase K,  overlaid with 3 drops of mineral oil and spun 5 seconds 

at 13,000g. This was followed by a 4-16 hour (overnight) incubation at 60oC. The tubes were heated for 10min 

at 90oC in order to denature the Proteinase K and to disrupt nucleic acid formaldehyde adducts. Upon removal 

of the oil, the tubes were centrifuged for15 min (at 13,000g) at room temperature and 250 ul of the supernatant 

was transferred to a clean 1.5 ml tube. After addition of 10ul 5M NaCl and 1000ml ethanol to the 250 ul 

supernatant, the tubes were incubated at -20oC for least 60 mins. This was followed by centrifugation for 15 

mins at 13,000g, at -4oC.  Upon removal of the supernatant, an additional centrifugation step for 10 secs ensured 

removal of the last traces of the supernatant. Finally, the pellet was air-dried and dissolved in 100ul of ddH2O.  

The Multiplex Ligation-dependent Probe Amplification Assay (MLPA)  

        The MLPA assay is a recent method for relative quantification of approximately 30-40 different 

DNA sequences in a single reaction, requiring only 20 ng of human DNA.  The method has been detailed 

elsewhere [9-13]. The assay has been used successfully for the detection of deletions and duplications and the 

characterization of chromosomal aberrations for gains and losses of genes in cell lines and tumor samples [9-

13].  Probes added to the samples are amplified and quantified instead of target nucleic acids. Amplification of 

probes by PCR depends on the presence of probe target sequences in the sample. Each probe consists of two 

oligonucleotides, one synthetic and one M13-derived, each hybridizing to adjacent sites of the target sequence. 

Such hybridized probe oligonucleotides are ligated, permitting subsequent amplification (All ligated probes 

have identical end sequences, permitting simultaneous PCR amplification using only one primer pair. Each 

probe gives rise to an amplification product of unique size between 130 and 480 bp. Probe target sequences are 

small (50-70 nucleotides). The prerequisite of a ligation reaction provides the opportunity to discriminate single 

nucleotide differences. The amplified fragments are separated on a DNA sequencer (Figure 7).  



  

 We have created and validated a panel of 122 breast-cancer-associated gene probes[12], distributed in 3 

batches with 40, 41, and 41 probes, respectively. Normal tissue from each cancer subject serves as an internal 

reference when available.  When normal tissue is not available from a subject, controls are obtained from breast 

reduction surgeries that have been reviewed and determined by the pathologist to have only normal breast 

epithelium.  For cell lines, where normal DNA is not available, control (normal) female DNA samples are run 

with each probe set. Quantification of loss or gain of gene loci is determined through a process of normalization 

[9-13].  The latter addresses variations in the surface area of a peak (intensity) encountered due to fluctuations in 

the assay run, such as amount of DNA, ploidy variations, and PCR conditions.  To determine gene copy number, 

the peak area for each probe is expressed as a percent of the total surface area of all peaks of a sample in an 

assay run (Figure 7).  Relative copy number for each probe is obtained as a ratio of the normalized value for 

each locus (peak) of the sample to that of the normal control. A difference is significant only if the ratio is less 

than 0.7 (loss) or higher than 1.3 (gain).  Complete loss or 0 copies is indicated by absence of a peak for that 

particular locus.  A relative copy number of 2 is considered normal, 1 or 0 copies is considered loss, and 3 

copies or more is considered gain. 

Statistical Analysis  

 The study utilized the Classification and Regression Tree (CART®) analysis [14] to develop a gene-

based model to discriminate among lesions in the three categories of DCIS, PLCIS, and LCIS.  CART 

methodology, known as binary recursive partitioning, was developed in 1984 by Breiman et al.,  and uses non-

parametric approaches [14]. The term “binary” implies that each group of patients, represented by a “node” in a 

decision tree, can only be split into two groups. Thus, each parent node can be split into two child nodes (Figure 

8A). The term “recursive” refers to the fact that the binary partitioning process can be applied over and over 

again.  Thus, each parent node can give rise to two child nodes and, in turn, each of these child nodes may 



  

themselves be split, forming additional children (Figure 8). The term “partitioning” refers to the fact that the 

dataset is split into sections or partitioned.   

 CART has several advantages as a tool for data mining and predictive modeling. The tree produced 

represents a model or decision tree in which each node (branch) is determined by splitting the dataset on the  

basis of the one variable that results in the best separation as defined by values of the dependent  variable (in 

this case, gene variables). At every branch, every variable is tested for its usefulness in further splitting. This 

exhaustive search for splitters can make CART computationally intensive. The relative importance of each 

variable is assessed based on its importance over all possible nodes and splits. In any one node, only one 

variable will be the best splitter although another may be a close second best (a good surrogate). The second-

best variable may be a good surrogate for numerous splits without ever being selected as the best primary 

splitter. Its usefulness as a surrogate for multiple splits leads to its higher importance. 

CART’s recursive partitioning algorithm, identifies the first gene variable with the greatest predictive 

power to create a first level branch (node) was applied to separating patients into three groups of PLCIS, LCIS, 

DCIS.  It proceeded next to identify the second gene for each subgroup with the second greatest predictive 

power to partition patients further into the same three groups. The process was continued until no further gene 

was identified to achieve further classification. Finally, CART calculates the error in each category as well as 

the overall error. The error rate is a percentage of cases that are misclassified (e.g., a  PLCIS case that is re- 

classified as LCIS).    

 To reduce the number of variables selected, we first identified a set of gene variables based on their 

importance from high (e.g., 100%) to low (0%) to predict lesion classification. This is followed by CART 

analysis on a subset of variables with a relative importance greater than 20%.  The unbalanced cost ratio was 

used in CART to reduce the error on misclassifying a PLCIS case into the category LICS or DCIS, or an error in 

misclassifying an LCIS case to the PLCIS category. To minimize error in misclassifying PLCIS as LCIS or 



  

DCIS, and LCIS as PLCIS, we used a cost ratio of 3:1 for misclassifying PLCIS as either LCIS or DCIS, and 

2:1 for misclassifying LCIS as PLCIS.   For example, a 3:1 cost ratio in the partitioning of PLCIS and LCIS 

lesions indicates that the cost of misclassifying a PLCIS case into the LCIS category group is 3 times more 

egregious than the misclassification of a  DCIS lesion into the PLCIS category group.       

For modeling purposes,  we calculated the error rate in each CIS category, as well as the error rate for the 

model, focusing on error reductions with respect to misclassification of a PLCIS case into either the LCIS or 

DCIS category, and misclassification of a DCIS case into the PLCIS category.   

To avoid over-fitting the data, the leave-one-out cross–validation [14] was performed to evaluate the 

predictive ability when the model was applied to new data in the same patient cohort. Cross validation is a 

computationally-intensive method for validating a procedure for model building, which avoids the requirement 

for a new or independent validation dataset. In cross validation, the learning dataset is randomly split into N 

sections, stratified by the outcome variable of interest. This assures that a similar distribution of outcomes is 

present in each of the N subsets of data. One of these subsets of data is reserved for use as an independent test 

dataset, whereas the other N-1 subsets are combined for use as the learning dataset in the model-building 

procedure. The entire model-building procedure is repeated N times, with a different subset of the data reserved 

for use as the test dataset each time. Thus, N different models are produced, each one of which can be tested 

against an independent subset of the data. The remarkable fact on which cross validation is based is that the 

average performance of these N models is an excellent estimate of the performance of the original model 

(produced using the entire learning dataset) on a future independent set of patients [14].  

Results: 

Ten genes in the range of 29% to 100% in variable importance were selected in a univariate analysis as 

predictor variables from among the 122 gene probe panel (Table 2). The optimal tree sequence with the least 

error rate yielded 7 terminal nodes rate (Table 3, Figure 8A). The regression tree for CIS is presented in Figure 



  

9. The splitting criterion for each node is given within the blue boxes.  Terminal nodes (N-, red boxes) indicate 

class prediction based on gene copy number. The tree generated is initiated as a root node (Node 1) containing 

all 38 CIS cases.  This node is split based on the value of a gene’s copy number obtained from the list of genes 

determined on a univariate analysis (Table 2). 

The parental node (Node 1) was split based on loss of CASP1 copy number (<=1.5) generating terminal 

Node-1 and predicts a CIS class of LCIS (4 cases). This resulted in classifying 3 LCIS cases and 1 PLCIS into 

the LCIS class. All other CIS cases (34) become placed in Node 2. Node 2 becomes split initially through 

assignment of the RELA gene, where gain of RELA (gene copy > 3.5) generates terminal Node 7 and predicts 

only LCIS (n=2).  The remaining 32 CIS cases without gain of the RELA gene (>3.5) are split into Node 3, 

which is further split by gain of EHF (gene copy > 2.5) into terminal Node-6 predicting 4 PLCIS and 

reclassifying a LCIS as PLCIS. The remaining 27 CIS cases without gain of EHF become assembled into node 4 

through assignment of the NCOA3 gene loss (copy number <1.5) classifying 5 CIS as PLCIS with a resultant 

reclassification of 1 DCIS as a PLCIS.  Node 5 CIS cases (n=22) become further split in terminal node-3 based 

on STK15 copy number (<2.5) classifying 12 CIS as DCIS without any misclassifications. The remaining 10 

CIS in node 6 finally become split into terminal node 4 as a result of TNFRSF1B abnormal gene copy number 

containing only DCIS cases (n=4) and into terminal Node 5 (gene copy number <1.5) with no misclassifications 

and terminal Node 6 (gene copy number >1.5) for a PLCIS classification to include 5 PLCIS and 1 DCIS.  

 Four cases of CIS were misclassified; 1 PLCIS reclassified into the LCIS category, 1 LCIS reclassified 

as a PLCIS, and 2 DCIS cases into the PLCIS class. Error rates for LCIS, PLCIS, and DCIS were11%, 7%, and 

17%, respectively, for  the learned data (Table 4), and 33%, 28% and 50% (Table 5), respectively, based on 

testing data (results of model validation).   

DISCUSSION 



  

 Historically, the molecular pathogenesis of cancer has been examined one gene at a time. A detailed 

molecular characterization or fingerprint of cancer is an objective recently made possible by the development of 

several new high-throughput analytical methods. These include techniques for the analysis of DNA, mRNA, and 

proteins within a cell [15-17]. The databases of detailed molecular information can then be linked to clinical 

information [18]. This approach can help patients by improving classification of tumor types, enabling clinicians 

to distinguish prognostic groups more accurately and therefore to select the most effective therapies. 

 Classification and Regression Tree (CART) analysis is a statistical method to partition data sets into 

logically similar groups based on either numeric or categorical variables. CART produces decision trees, based 

on simple yes/no questions, to reveal relationships that are sometimes hidden in extremely complex datasets.  

CART permitted us to quantify the unique relationship between the categories of PLCIS, DCIS, and LCIS and 

gene copy number variables.  

 Several things should be pointed out regarding this CART tree. First, it is much simpler to interpret than 

the multivariate logistic regression model, making it more likely to be practical in a clinical setting. Secondly, 

the inherent “logic” in the tree is easily apparent, and it makes clinical sense. Interestingly, it has been shown 

that clinical decision-making rules which make sense to clinicians are more likely to be followed in clinical 

practice than rules in which the reasoning is not apparent.  

 All LCIS cases but one were correctly classified into their specific LCIS category.  The misclassified 

LCIS was netted in terminal Node 6 as a PLCIS.  A single PLCIS case (1/14) was reclassified into the LCIS 

category at terminal Node1.  Terminal nodes 3 and 4 correctly classified only DCIS lesions (n=12 and n=4, 

respectively).  Two DCIS became reclassified as PLCIS through assignment of NCOA3 and TNFRSF1B gene 

assignments.  

 This study demonstrates the ability of CART analysis to predict CIS tissue types molecularly, based on 

gene copy number variables. Currently, PLCIS is treated like LCIS. However, the aggressive behavior and 



  

histological pleomorphism seen in PLCIS indicate a possible association between PLCIS and DCIS that may 

warrant an altered clinical management. Because negative E-cadherin immunostaining does not discriminate 

PLCIS from LCIS, nor does it unequivocally differentiate DCIS-ID from PLCIS, additional tools would aid in 

the categorical classification of CIS lesions as LCIS, DCIS, or PLCIS.  

 The present study demonstrated a propensity for misclassification of DCIS into the PLCIS category.  

Their genotypic and morphological similarities add weight to consideration of PLCIS as an aggressive lesion.  

The study provides rationale for the utility of molecular differentiation algorithms in the evaluation of PLCIS 

and indeterminate CIS lesions.   

 The purpose of a decision tree is usually to allow the accurate prediction of outcome for future cases, 

based on the value of gene copy number variables.  This is accomplished when a generated decision tree is 

saved for future use for interrogation with a new dataset to predict outcome. Because of the small sample size, 

and a less-than-robust validation result, a decision tree like the one generated in this study requires additional 

verification using an independent dataset, where cases from the new dataset are run through the tree.   

 From a practical standpoint, once a validated decision tree is generated, the process of CIS classification 

can be streamlined.  Instead of starting from a 112 MLPA gene panel, a refined and focused MLPA panel 

comprising the 10 validated genes from the panel can  provide the fluidity and practicality of an evidence-based 

targeted gene panel.  
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    Table 1: Carcinoma in situ (CIS) Classification 

CIS ID  Histopathology 

Classification 

Molecular 
Classification       
(CART)  

CIS ID  Histopathology 

Classification 

Molecular 
Classification       
(CART)  

Q1 DCIS DCIS Q22 PLCIS PLCIS 

Q2 DCIS DCIS Q24 PLCIS PLCIS 

Q4 DCIS DCIS Q25 PLCIS PLCIS 

Q5 DCIS DCIS Q26 PLCIS PLCIS 

Q6 DCIS DCIS Q27 PLCIS PLCIS 

Q7 DCIS DCIS Q28 PLCIS PLCIS 

Q8 DCIS DCIS Q29 PLCIS PLCIS 

Q9 DCIS DCIS Q30 PLCIS   PLCIS 

Q10 DCIS DCIS Q51 PLCIS PLCIS 

Q13 DCIS DCIS Q56 PLCIS PLCIS 

Q14 DCIS DCIS Q57 PLCIS PLCIS 

Q16 DCIS DCIS Q59 PLCIS PLCIS 

Q46 DCIS DCIS Q41 PLCIS *LCIS  

Q49 DCIS DCIS Q35 LCIS LCIS 

Q52 DCIS DCIS Q40 LCIS LCIS 

Q54 DCIS DCIS Q42 LCIS LCIS 

Q15 DCIS *PLCIS  Q43 LCIS LCIS 

Q53 DCIS *PLCIS  Q50 LCIS LCIS 

Q17 PLCIS PLCIS Q37 LCIS *PLCIS  

         *Misclassified samples by Gene Probes    
 
 
 
 
 
              Table 2: Univariate analysis for variable Importance of genes  

Variable Score   
NCOA3_D01N 100.00 ||||||||||||||||||||||||||||||||| ||||||||

| 
EHF_D01N 86.41 ||||||||||||||||||||||||||||||||||||  
TNFRSF1B_D01 75.15 ||||||||||||||||||||||||||||||| 
RELA_D01N 73.93 ||||||||||||||||||||||||||||||| 
DCC_D02N 70.68 ||||||||||||||||||||||||||||| 
CASP1_D01N 66.88 |||||||||||||||||||||||||||| 
KLK3_D02N 58.74 |||||||||||||||||||||||| 
STK15_D01N 51.74 ||||||||||||||||||||| 
RENT2_D01N 44.98 |||||||||||||||||| 
FGF3_D01N 28.98 ||||||||||| 

 
   



  

 Table 3: Tree Sequence  
Tree 

Number  
Termina

l 
Nodes 

Cross-Validated  
Relative Cost 

Resubstitutio
n 

Relative Cost  

Complexity 

1** 7 0.560 ± 0.131 0.175 -1.000 
2 5 0.754 ± 0.126 0.325 0.050 
3 4 0.944 ± 0.108 0.440 0.077 
4 3 1.095 ± 0.073 0.583 0.095 
5 2 1.067 ± 0.071 0.750 0.111 
6 1 1.000 ± 9.16E-005 1.000 0.167 

   *  Minimum Cost 
   ** Optimal  
 
           Table 4:  Misclassification for Learned Data 

Class Number of Cases Number  Misclassified Percent  Error Cost 
2 18 2 11.11 0.11 
3 14 1 7.14 0.07 
4 6 1 16.67 0.17 

 
           Table 5:  Misclassification for Test Data 

Class Number of  Cases Number  Misclassified Percent Error Cost 
2 18 6 33.33 0.33 
3 14 4 28.57 0.29 
4 6 3 50.00 0.50 

 
 
 



  

  

Figure 1: Most breast carcinoma in situ lesions are  
easily categorized as ductal (DCIS) or lobular (LCI S) 
  

DCIS 

LCIS 

 

DCIS ID DCIS ID 
 

Figure 2: Some carcinoma in situ lesions have  
indeterminate (ID) histological features 
 



  

LCIS PLCIS DCIS IG 

Figure 3: Morphologically PLCIS has a typical archi tectural 
pattern of LCIS but the neoplastic cells resemble 
intermediate  grade DCIS (DCIS IG).  

 
 
 
 
 
 

PLCIS LCIS  

Figure 4: PLCIS is expected to be more aggressive t han 
LCIS.  



  

Figure 5: E-cadherin (EC) expression provides some 
degree of lesion sub typing. A: H &E; B: EC stain 
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Figure 6: Limitations to EC staining:A negative EC stain 
 cannot unequivocally distinguish DCIS ID  from PLC IS. 
 



  

• Denatured genomic DNA is hybridized with a mixture of ~ 40 probes. 

• Each MLPA probe consists of two oligonucleotides, one synthetic and one M13-derived. 

PCR primer sequence Y 

Hybridization   sequence 

 

PCR primer sequence X 
Stuffer sequence (different for each probe)                   

Hybridization   sequence 

   

X  
5’ 

5’ 3’ Target A 

Y 

Target B 

X 

5’ 
5’ 3’ 

Y 

The amplification product of each 
probe has a unique length (130-480 
bp). 

5’ 3’ 5’ 3’ 

X Y 

5’ 3’ 

X Y 
5’ 3’ 

All  probe ligation products are amplified by PCR using only one primer pair. 

Amplification products are separated on a DNA  sequencer.  

The two parts of each probe hybridize 
to adjacent target sequences and are 
ligated by a thermostable ligase. 

Figure 7: Multiplex Ligation-dependent Probe Amplif ication (MLPA) 

 Worsham, MJ et al. Arch of Otolaryngol Head and Neck Surg, 2003, 129: 702-708 

 



  

Figure 8: The optimal tree sequence with the least error rate 
yielded 7 terminal nodes  (A) with the smallest error rate (B).   

Error Curve  
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